skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee_李, Chin-Fei 景輝"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Grain growth in disks around young stars plays a crucial role in the formation of planets. Early grain growth has been suggested in the HH 212 protostellar disk by previous polarization observations. To confirm it and to determine the grain size, we analyze high-resolution multiband observations of the disk obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) in bands 9 (0.4 mm), 7 (0.9 mm), 6 (1.3 mm), and 3 (3 mm), as well as with the Very Large Array (VLA) in bandKa(9 mm), and we present new VLA data in bandsQ(7 mm),K(1.3 cm), andX(3 cm). We adopt a parameterized flared disk model to fit the continuum maps of the disk in these bands and derive the opacities, albedos, and opacity spectral indexβof the dust in the disk, taking into account the dust scattering ignored in the previous work modeling the multiband data of this source. For the VLA bands, we only include the bandQdata in our modeling to avoid free–free emission contamination. The obtained opacities, albedos, and opacity spectral indexβ(with a value of  ∼1.2) suggest that the upper limit of maximum grain size in the disk should be  ∼130μm, consistent with that implied in the previous polarization observations in band 7, supporting the grain growth in this disk. The values of the absorption opacities further highlight the need for a new dust composition model for Class 0/I disks. 
    more » « less
    Free, publicly-accessible full text available February 21, 2026